Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 291(4): 722-743, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947039

RESUMO

Physiologically, renal medullary cells are surrounded by a hyperosmolar interstitium. However, different pathological situations can induce abrupt changes in environmental osmolality, causing cell stress. Therefore, renal cells must adapt to survive in this new condition. We previously demonstrated that, among the mechanisms involved in osmoprotection, renal cells upregulate triglyceride biosynthesis (which helps preserve glycerophospholipid synthesis and membrane homeostasis) and cyclooxygenase-2 (which generates prostaglandins from arachidonic acid) to maintain lipid metabolism in renal tissue. Herein, we evaluated whether hyperosmolality modulates phospholipase A2 (PLA2 ) activity, leading to arachidonic acid release from membrane glycerophospholipid, and investigated its possible role in hyperosmolality-induced triglyceride synthesis and accumulation. We found that hyperosmolality induced PLA2 expression and activity in Madin-Darby canine kidney cells. Cytosolic PLA2 (cPLA2) inhibition, but not secreted or calcium-independent PLA2 (sPLA2 or iPLA2 , respectively), prevented triglyceride synthesis and reduced cell survival. Inhibition of prostaglandin synthesis with indomethacin not only failed to prevent hyperosmolality-induced triglyceride synthesis but also exacerbated it. Similar results were observed with the peroxisomal proliferator activated receptor gamma (PPARγ) agonist rosiglitazone. Furthermore, hyperosmolality increased free intracellular arachidonic acid levels, which were even higher when prostaglandin synthesis was inhibited by indomethacin. Blocking PPARγ with GW-9662 prevented the effects of both indomethacin and rosiglitazone on triglyceride synthesis and even reduced hyperosmolality-induced triglyceride synthesis, suggesting that arachidonic acid may stimulate triglyceride synthesis through PPARγ activation. These results highlight the role of cPLA2 in osmoprotection, since it is essential to provide arachidonic acid, which is involved in PPARγ-regulated triglyceride synthesis, thus guaranteeing cell survival.


Assuntos
PPAR gama , Prostaglandinas , Animais , Cães , PPAR gama/genética , Ácido Araquidônico/metabolismo , Rosiglitazona , Pressão Osmótica , Fosfolipases A2 , Indometacina , Homeostase , Glicerofosfolipídeos , Triglicerídeos
2.
Methods Mol Biol ; 2378: 169-187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34985700

RESUMO

The unfolded protein response (UPR) is a complex network of intracellular pathways that transmits signals from ER lumen and/or ER bilayer to the nuclear compartment in order to activate gene transcription. UPR is activated by the loss of ER capacities, known as ER stress, and occurs to restore ER properties. In this regard, glycerolipid (GL) synthesis activation contributes to ER membrane homeostasis and IRE1α-XBP1, one UPR pathway, has a main role in lipogenic genes transcription. Herein, we describe the strategy and methodology used to evaluate whether IRE1α-XBP1 pathway regulates lipid metabolism in renal epithelial cells subjected to hyperosmolar environment. XBP1s activity was hindered by blocking IRE1α RNAse activity and by impeding its expression; under these conditions, we determined GL synthesis and lipogenic enzymes expression.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Lipídeos , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
3.
Atherosclerosis ; 288: 51-59, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323462

RESUMO

BACKGROUND AND AIMS: Epicardial adipose tissue (EAT) is a visceral AT, surrounding myocardium and coronary arteries. Its volume is higher in Type 2 diabetic (DM2) patients, associated with cardiovascular disease risk. Lipoprotein lipase (LPL) hydrolyses triglycerides (TG) from circulating lipoproteins, supplying fatty acids to AT, contributing to its expansion. We aimed to evaluate LPL expression and activity in EAT from DM2 and no DM2 patients, and its regulators ANGPTL4, GPIHBP1 and PPARγ levels, together with VLDLR expression and EAT LPL association with VLDL characteristics. METHODS: We studied patients undergoing coronary by-pass graft (CABG) divided into CABG-DM2 (n = 21) and CABG-noDM2 (n = 29), and patients without CABG (No CABG, n = 30). During surgery, EAT and subcutaneous AT (SAT) were obtained, in which LPL activity, gene and protein expression, its regulators and VLDLR protein levels were determined. Isolated circulating VLDLs were characterized. RESULTS: EAT LPL activity was higher in CABG-DM2 compared to CABG-noDM2 and No CABG (p=0.002 and p<0.001) and in CABG-noDM2 compared to No CABG (p=0.02), without differences in its expression. ANGPTL4 levels were higher in EAT from No CABG compared to CABG-DM2 and CABG-noDM2 (p<0.001). GPIHBP1 levels were higher in EAT from CABG-DM2 and CABG-noDM2 compared to No CABG (p= 0.04). EAT from CABG-DM2 presented higher PPARγ levels than CABG-noDM2 and No CABG (p=0.02 and p=0.03). No differences were observed in VLDL composition between groups, although EAT LPL activity was inversely associated with VLDL-TG and TG/protein index (p<0.05). CONCLUSIONS: EAT LPL regulation would be mainly post-translational. The higher LPL activity in DM2 could be partly responsible for the increase in EAT volume.


Assuntos
Proteína 4 Semelhante a Angiopoietina/análise , Diabetes Mellitus Tipo 2/enzimologia , Gordura Intra-Abdominal/enzimologia , Lipase Lipoproteica/análise , Receptores de Lipoproteínas/análise , Adiposidade , Idoso , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/fisiopatologia , Ativação Enzimática , Ácidos Graxos/sangue , Feminino , Humanos , Gordura Intra-Abdominal/fisiopatologia , Lipoproteínas VLDL/sangue , Masculino , Pessoa de Meia-Idade , PPAR gama/metabolismo , Pericárdio , Receptores de LDL/análise , Triglicerídeos/sangue
4.
Biochim Biophys Acta Biomembr ; 1861(10): 182993, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31132336

RESUMO

Mutations in the ATP13A2 gene (PARK9, CLN12, OMIM 610513) were initially associated with a form of Parkinson's Disease (PD) known as Kufor Rakeb Syndrome (KRS). However, the genetic spectrum of ATP13A2-associated disorders was expanded in the last years, because it has been found to underlay variants of neuronal ceroid-lipofuscinoses (NCLs) and hereditary spastic paraplegia. As ATP13A2 seems to be a key component of the endo-lysosome pathway, the fact that these pathologies are commonly characterized by endo-lysosomal dysfunction is not surprising. Here we report that increasing the level of functional ATP13A2 in a stable SH-SY5Y cell line disrupts lipid homeostasis. ATP13A2 overexpression increases the fluorescence intensity of the fluorescent analog phosphatidylethanolamine (NBD-PE) and the formation of multilamellar bodies, resembling the so-called "drug-induced phospholipidosis". We also found that expression of ATP13A2 reduces the ceramide-fluorescence intensity and the content of bis(monoacylglyceryl)phosphate (BMP). BMP is required for lipid degradation and exosome biogenesis inside acidic compartments, so this result suggests that ATP13A2 may be modifying the lipid digestion capacity and/or the redistribution of lipids in these subcellular organelles. In addition, ATP13A2-overexpression decreased the total content of triglycerides (TGs), cholesterol and lipid droplets. As TGs are necessary for the synthesis of new membranes, this observation suggests that increasing the function of ATP13A2 switches the endo-lysosomal system towards vesicle secretion.


Assuntos
Fosfolipídeos/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Linhagem Celular Tumoral , Colesterol/metabolismo , Endossomos/metabolismo , Homeostase , Humanos , Metabolismo dos Lipídeos , Lisossomos/metabolismo , Monoglicerídeos/metabolismo , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Fosfatidiletanolaminas/metabolismo , Triglicerídeos/metabolismo
5.
Lipids ; 53(10): 993-1003, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30592063

RESUMO

Lipoprotein lipase (LPL) and endothelial lipase (EL) are involved in lipoprotein metabolism. In insulin-resistance, their behavior is altered. Peroxisome proliferator-activated receptors (PPAR) and apoproteins (apo)CII and CIII could be partly responsible for these alterations. To evaluate this response, we assessed Lpl and Lipg expression, protein levels, and enzyme activity in adipose tissue (AT) and heart in an obesity model. Besides, we assessed the role of PPAR and apoC. Male Wistar rats were fed with standard diet (Control, n = 14) or high-fat diet (HFD, n = 14) for 14 weeks. Glucose and lipoprotein profiles were measured. Histological studies were performed in heart and epididymal AT. Lpl and Lipg were assessed by reverse transcription polymerase chain reaction (RT-qPCR), protein levels by Western Blot, and activities by radiometric assays. Cardiac and AT PPAR expression were measured by Western Blot and hepatic Apoc2 and Apoc3 mRNA by RT-qPCR. In HFD, fat deposits were observed in hearts, whereas AT presented a higher adipocyte size. In heart and AT, no differences were found in Lipg mRNA between groups, while AT Lpl mRNA and LPL protein were decreased in HFD, without differences in heart. In both tissues, EL protein levels and activity were increased and inversely associated with decreased LPL activity, being partially responsible for the atherogenic lipoprotein profile in HFD. PPARγ expression in AT was decreased in HFD, without differences in cardiac PPARδ expression and hepatic apoC mRNA. The increase in EL activity could be an alternative pathway for fatty acid release from lipoproteins and uptake in tissues with decreased LPL activity. In AT, PPARγ could be involved in enzyme regulation.


Assuntos
Ácidos Graxos/metabolismo , Lipase/metabolismo , Lipoproteínas/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Masculino , Obesidade/etiologia , Obesidade/patologia , Ratos Wistar
6.
Heliyon ; 4(12): e01072, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30603705

RESUMO

NF-κB and TonEBP belong to the Rel-superfamily of transcription factors. Several specific stimuli, including hypertonicity which is a key factor for renal physiology, are able to activate them. It has been reported that, after hypertonic challenge, NF-κB activity can be modulated by TonEBP, considered as the master regulator of transcriptional activity in the presence of changes in environmental tonicity. In the present work we evaluated whether hypertonicity-induced gene transcription mediated by p65/RelA and TonEBP occurs by an independent action of each transcription factor or by acting together. To do this, we evaluated the expression of their specific target genes and cyclooxygenase-2 (COX-2), a common target of both transcription factors, in the renal epithelial cell line Madin-Darby canine kidney (MDCK) subjected to hypertonic environment. The results herein indicate that hypertonicity activates the Rel-family transcription factors p65/RelA and TonEBP in MDCK cells, and that both are required for hypertonic induction of COX-2 and of their specific target genes. In addition, present data show that p65/RelA modulates TonEBP expression and both colocalize in nuclei of hypertonic cultures of MDCK cells. Thus, a sequential and synchronized action p65/RelA → TonEBP would be necessary for the expression of hypertonicity-induced protective genes.

7.
Am J Physiol Renal Physiol ; 297(5): F1181-91, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19759271

RESUMO

Focal adhesions (FAs) are structures of cell attachment to the extracellular matrix. We previously demonstrated that the intrarenal hormone bradykinin (BK) induces the restructuring of FAs in papillary collecting duct cells by dissipation of vinculin, but not talin, from FAs through a mechanism that involves PLCbeta activation, and that it also induces actin cytoskeleton reorganization. In the present study we investigated the mechanism by which BK induces the dissipation of vinculin-stained FAs in collecting duct cells. We found that BK induces the internalization of vinculin by a noncaveolar and independent pinocytic pathway and that at least a fraction of this protein is delivered to the recycling endosomal compartment, where it colocalizes with the transferrin receptor. Regarding the reassembly of vinculin-stained FAs, we found that BK induces the formation of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]-enriched vinculin-containing vesicles, which, by following a polarized exocytic route, transport vinculin to the site of FA assembly, an action that depends on actin filaments. The present study, which was carried out with cells that were not genetically manipulated, shows for the first time that BK induces the formation of vesicle-like structures containing vinculin and PtdIns(4,5)P2, which transport vinculin to the site of FA assembly. Therefore, the modulation of the formation of these vesicle-like structures could be a physiological mechanism through which the cell can reuse the BK-induced internalized vinculin to be delivered for newly forming FAs in renal papillary collecting duct cells.


Assuntos
Bradicinina/farmacologia , Túbulos Renais Coletores/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Vinculina/metabolismo , Animais , Caveolina 1/metabolismo , Endocitose/efeitos dos fármacos , Adesões Focais/efeitos dos fármacos , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/efeitos dos fármacos , Masculino , Microscopia de Fluorescência , Fosfatidilinositol 4,5-Difosfato , Pinocitose/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor B2 da Bradicinina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Biochim Biophys Acta ; 1583(2): 185-94, 2002 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12117562

RESUMO

Phosphatidylcholine (PC) is the most abundant phospholipid in mammalian cell membranes. Several lines of evidence support that PC homeostasis is preserved by the equilibrium between PC biosynthetic enzymes and phospholipases catabolic activities. We have previously shown that papillary synthesis of PC depends on prostaglandins (PGs) that modulate biosynthetic enzymes. In papillary tissue, under bradikynin stimulus, arachidonic acid (AA) mobilization (the substrate for PG synthesis) requires a previous phospholipase C (PLC) activation. Thus, in the present work, we study the possible involvement of PLC in PC biosynthesis and its relationship with PG biosynthetic pathway on the maintenance of phospholipid renewal in papillary membranes; we also evaluated the relevance of CDP-choline pathway enzymes compartmentalization. To this end, neomycin, U-73122 and dibutiryl cyclic AMP, reported as PLC inhibitors, were used to study PC synthesis in rat renal papilla. All the PLC inhibitors assayed impaired PC synthesis. PG synthesis was also blocked by PLC inhibitors without affecting cyclooxygenase activity, indicating a metabolic connection between both pathways. However, we found that PC biosynthesis decrease in the presence of PLC inhibitors was not a consequence of PG decreased synthesis, suggesting that basal PLC activity and PGs exert their effect on different targets of PC biosynthetic pathway. The study of PC biosynthetic enzymes showed that PLC inhibitors affect CTP:phosphocholine cytidylyltransferase (CCT) activity while PGD(2) operates on CDP-choline:1,2-diacylglycerol cholinephosphotransferase (CPT), both activities associated to papillary enriched-nuclei fraction. The present results suggest that renal papillary PC synthesis is a highly regulated process under basal conditions. Such regulation might occur at least at two different levels of the CDP-choline pathway: on the one hand, PLC operates on CCT activity; on the other, while PGs regulate CPT activity.


Assuntos
Colina-Fosfato Citidililtransferase/metabolismo , Diacilglicerol Colinofosfotransferase/metabolismo , Rim/metabolismo , Fosfatidilcolinas/biossíntese , Prostaglandina D2/farmacologia , Fosfolipases Tipo C/antagonistas & inibidores , Animais , Bucladesina/farmacologia , Técnicas de Cultura , Estrenos/farmacologia , Masculino , Neomicina/farmacologia , Prostaglandinas/biossíntese , Prostaglandinas/farmacologia , Pirrolidinonas/farmacologia , Ratos , Ratos Wistar
9.
Biochem Pharmacol ; 63(3): 507-14, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11853701

RESUMO

In the present paper, we investigated the effect of angiotensin-(1-7) (Ang-(1-7)) on phospholipid biosynthesis in the rat renal cortex. A significant increase in phosphatidylcholine (PC) labeling was observed when cortical slices, prelabeled with [32P]orthophosphate, were incubated for 30 min in the presence of Ang-(1-7) (1 pM to 100 nM). Neither the phospholipase C inhibitors, neomycin or db-cAMP nor the protein kinase C inhibitors, chelerythrine or H7, modified the stimulatory effect induced by 0.1 nM Ang-(1-7). The enhancement of PC biosynthesis caused by 0.1 nM Ang-(1-7) was unmodified by either losartan, an AT(1) receptor antagonist, or (1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazol[4,5-c]pyridine-6-carboxylic acid ditrifluoroacetate) (PD 123319), an AT(2) receptor antagonist, but was partially blocked by [D-Ala(7)]Ang-(1-7), an Ang-(1-7) specific antagonist. However, losartan potentiated the effect of 100 nM Ang-(1-7) on PC biosynthesis. Losartan by itself increased the de novo synthesis of PC. These results suggest that the Ang-(1-7)-mediated increase in PC biosynthesis is independent of AT(1) and AT(2) receptor activation but mediated by a specific Ang-(1-7) receptor. This mechanism is independent of phospholipase C and PKC activation.


Assuntos
Angiotensina I/farmacologia , Córtex Renal/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fosfatidilcolinas/biossíntese , Antagonistas de Receptores de Angiotensina , Animais , Córtex Renal/metabolismo , Masculino , Fosfolipídeos/biossíntese , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...